REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this purcen. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Oavis Highway, Suite 1204, Arrington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC 20503

<u>June 1994</u> Final | Jan 92-31 May 93 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Workshop on Adaptive Methods for Partial Differential Equations

2. REPORT DATE

DAAL03-92-G-0009

3. REPORT TYPE AND DATES COVERED

6. AUTHOR(S)

Joseph E. Flaherty

1. AGENCY USE ONLY (Leave blank)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Rensselaer Polytechnic Institute Troy, NY 12180

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Office

P.O. Box 12211 Research Triangle Park, NC 27709-2211 10. SPONSORING / MONITORING AGENCY REPORT NUMBER

ARO 29079.1-MA-CF

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other dopumentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

During this workshop, approximately 100 participants (whose names are appended) from industry, academia, Department of Defense, and other national laboratories heard talks on the theory and practice of adaptive approaches in several mathematical areas and physical disciplines. Also, for the first time in this series of workshops, a full day tutorial was held on May 17, covering some of the more germane issues in adaptivity. This tutorial, conducted by J. Tinsley Oden and two of the meeting co-organizers, Joseph E. Flaherty and Mark Shephard, discussed topics ranging from the underlying principles of a priori error estimation, to adaptive methods for transient problems, to computational geometric approaches for automatic three-dimensional finite element mesh generation.

DTIC QUALITY INSPECTED 5 139

Workshop, Adaptive Methods, Partial Differential Equations,

OF THIS PAGE

Adaptivity, Priori Error Estimation

18. SECURITY CLASSIFICATION

UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED

20. LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500

OF REPORT

UNCLASSIFIED

17. SECURITY CLASSIFICATION

14. SUBJECT TERMS

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std 239-18 298-102

15. NUMBER OF PAGES

16. PRICE CODE

FINAL REPORT

U.S. Army Research Office Contract DAAL03-92-G-0009

Period:

1 January 1992 - 30 June 1994

Title of Research:

Workshop on Adaptive Methods

for Partial Differential Equations

Principal Investigators:

Joseph E. Flaherty

Mark S. Shephard

Scientific Computation Research Center

Rensselaer Polytechnic Institute

Troy, New York 12180

Accession For		
TIS	GPA&I	19
DTIC TAB		ň
Unamnomiced		
Just	dication.	
By	ibution/	
i e	lability	
Dist A ·	Avail and Special	/or

Interest and progress on the development of reliable, robust, and efficient software for the automatic numerical solution of partial differential equations continues to grow. The U.S. Army Research Office (ARO) sponsored the initial workshop in this area at the University of Maryland in 1983. A second ARO-sponsored workshop was held at the Rensselaer Polytechnic Institute in 1988. Funding of this project supported the Third ARO Workshop on Adaptive Methods for Partial Differential Equations which was also held at Rensselaer, 18-22 May, 1992. During this workshop, approximately 100 participants (whose names are appended) from industry, academia, Department of Defense, and other national laboratories heard talks on the theory and practice of adaptive approaches in several mathematical areas and physical disciplines. Also, for the first time in this series of workshops, a full day tutorial was held on May 17, covering some of the more germane issues in adaptivity. This tutorial, conducted by J. Tinsley Oden and two of the meeting co-organizers, Joseph E. Flaherty and Mark Shephard, discussed topics ranging from the underlying principles of a priori error estimation, to adaptive methods for transient problems, to computational geometric approaches for automatic three-dimensional finite element mesh generation.

Written proceedings of the invited and some contributed lectures at the workshop were published as a special issue (Volume 14, Numbers 1-3, April 1994) of Applied Numerical Mathematics which was edited by Kenneth Clark of ARO and Flaherty and Shephard of Rensselaer. The 18 papers in this volume spanned 365 pages and covered topics involving h-, p-, and r-refinement strategies for transient and steady problems; hierarchical solution and modeling techniques; a posteriori error estimation; parallel solution techniques; mesh generation; and applications to problems in elasticity, fluid mechanics, and biology.

Hierarchical strategies were the dominant theme at the workshop and in these proceedings. The papers by Fish et al. and McCormick and Rüde describe hierarchical hrefinement strategies where solutions on finer meshes are regarded as corrections to those on coarser ones. With a composite-grid formulation, McCormick and Rüde utilize multigrid solution techniques to enhance solution convergence. Biswas et al. describe a spatially discontinuous hierarchical hp-refinement strategy for hyperbolic systems of conservation laws. Oden et al. describes a method for obtaining a posteriori error estimates of adaptive hp-refinement processes that may be useful on a broad spectrum of problems.

Turning to a relatively new direction, papers by Babuska et al., Shephard and Wentorf, and Noor et al. relate hierarchical solution techniques to the assumptions used in formulating the mathematical model. They discusses the importance of specifying computational accuracy in relation to the idealizations of the mathematical model. Error estimates include both discretization errors, as usual in adaptive computation, and modeling errors, which arise when a more exact formulation is replaced by a simpler one. Typical situations involve the relationship of a plate or shell model to, a more exact, three-dimensional

elastic formulation or a homogenized model of the behavior of a composite media. Continuing in this vein, Shephard and Wentorf describe the structure of a framework for automating such modeling decisions. We believe that these innovations will become more widespread in the future.

Adaptive solution techniques for transient systems continues to grow. Local refinement strategies where space and time are locally enriched are represented by the papers of Berger and Saltzman and Ewing and Lazarov. Techniques for steady and unsteady fluid flows are described in papers by Berger and Saltzman; Biswas et al.; Grove; Lottati and Eidleman; Powell; and Ramakrishnan. Grove utilizes sophisticated front-tracking methods to avoid spurious effects near solution irregularities, while most of the other authors use artificial dissipation and solution limiting.

The papers of Berger and Saltzman and Biswas et al. discuss parallel adaptive procedures, which we view as another aspect of the field that will become more prevalent in future symposia. The goal and the challenge here are to develop strategies that simultaneously minimize both the computational cost and the redistribution cost that is incurred during adaptive enrichment.

Several problems in mechanics have been mentioned; however, Johnson and MacLeod describes a new application of adaptive methods to a problem in medical imaging. Enhanced derivative recovery through least squares techniques is the subject of Belytschko and Blacker's paper while Dougherty and Hyman and Simpson describe mesh-generation strategies. Finally, Kozlovsky describes a programming environment for developing adaptive solution strategies.

It may be interesting to trace the growth of adaptive methods over the ten-year period of the U. S. Army-sponsored workshops. None of the papers at the 1983 workshop involved three-dimensional computations whereas at least four contributions in these proceedings (those by Berger and Saltzman, Ewing and Lazarov, Johnson and MacLeod, Oden et al., and Shephard and Wentorf) involve difficult three-dimensional problems. At the time of the first workshop, the state of the art of adaptive techniques for steady problems was further advanced then it was for transient problems. The papers in this volume would suggest that research on transient problems has closed the gap. Many of the papers dealing with transient phenomena now address two- and three-dimensional problems while those in the proceedings of the first workshop concentrated on one-dimensional problems. As yet, however, no research on hierarchical techniques in both space and time is represented.

While parallel solution techniques have grown with the availability of hardware at, e.g., national computer centers, their use with adaptive techniques continues to be limited. The challenges are substantial, since adaptivity and parallelism are at odds. The most successful parallel solution strategies have employed simple algorithms and uniform structures

while the most successful adaptive techniques utilize complex logic, sophisticated solution strategies involving mesh and order variation, and nonuniform structures. Nevertheless, these difficulties must be overcome if adaptive methods are to be used to address the most difficult three-dimensional transient and steady problems that arise in modern science and engineering.

Some shortcomings cited in the proceedings of the first two workshops continue to be apparent. Suitable benchmark calculations illustrating the effectiveness of an approach with respect to more or less clearly formulated aims and performance measures have yet to be defined. Notions of adaptivity are common in fields such as biology, optimal control, and artificial intelligence. Our aim was to present related ideas of adaptivity used in some of these fields at the workshop and to stimulate a discussion with comparisons and synergism. Most adaptive techniques are still being applied to problems in mechanics. We would hope to see more varied usage and, in this respect, find Johnson and MacLeod's application to a problem in medical imaging refreshing. We will endeavor to have applications in other disciplines represented at future workshops. Once again, the synergy provided by individuals conducting similar activities in different fields can only be beneficial.

The workshop and published proceedings represented, in our opinion, a realistic picture of today's state of the art. The area of adaptive computational methods for partial differential equations is highly promising and offers many challenging research problems. The field is still young but is having a profound impact on computational strategies in several disciplines.

Workshop Participants

Mohammed Aiffa, Mathematical Sciences, Rensselaer Polytechnic Institute

Mark Ainsworth, Mathematics, Texas Institute for Computational Mechanics

Ed Akin, Mechanical Engineering, Rice University

Ron Ashany, Graduate Center, City University of New York

Ivo Babuska, Institute for Physical Science and Technology, University of Maryland

Peggy Bachmann, SCOREC, Rensselaer Polytechnic Institute

Celso Barcelos, Aries Technology

Ted Belytschko, Civil Engineering, Northwestern University

Marsha Berger, Courant Institute of Mathematical Sciences and RIACS

Kim Bey, Structural Mechanics Division, NASA Langley Research Center

Rupak Biswas, RIACS

Ted Blacker, Sandia National Laboratories

Jugma Bora, PDA Engineering

Malcolm Casale, PATRAN Software Products Division, PDA Engineering

Jagdish Chandra, Mathematics and Computer Science Division, US Army Research Office

Alain Charbonneau, Mathematics and Statistics, Université Laval

Peter Chen, Research Division, Benét Laboratories

Qi Keith Chen, Laboratory for Plasma Research, University of Maryland

Wing Cheng, Applied Mechanics, Corporate Technology Center, FMC Corporation

Shun-chin Chou, Mech. and Struct. Branch, US Army Materials Technology Laboratory

Li Fu Chu, University of Tulsa

Melvyn Ciment, CISE Directorate, National Science Foundation

Kenneth Clark, Mathematics and Computer Science Division, US Army Research Office

Michael Coyle, Research Division, Benét Laboratories

John Dannenhoffer, Comp. and Design Methods, United Technologies Research Center

Gautam Dasgupta, Civil Engineering and Engineering. Mechanics, Columbia University

Roger Davis, Comp. and Design Methods, United Technologies Research Center

Yuefan Deng, Applied Mathematics, SUNY at Stony Brook

Karen Devine, Computer Science, Rensselaer Polytechnic Institute

Comer Duncan, Physics and Astronomy, Bowling Green State University

Todd Dupont, Computer Science, University of Chicago

Harris Edge, Launch & Flight Division, USA Ballistic Research Laboratory

Richard Ewing, Institute for Scientific Computing, University of Wyoming

Jacob Fish, SCOREC, Rensselaer Polytechnic Institute

Joseph Flaherty, Computer Science and SCOREC, Rensselaer Polytechnic Institute

Colin Freese, Mech. and Struct. Branch, US Army Materials Technology Laboratory

John Gary, Div. 881, NIST

Marcel Georges, SCOREC, Rensselaer Polytechnic Institute

Joel Glickman, InterScience

John Grove, Applied Mathematics and Statistics, SUNY at Stony Brook

Benqi Guo, University of Manitoba

Martin Heinstein, Sandia National Laboratories

Jens Hugger, Institute for Physical Science and Technology, University of Maryland

Gregory Hulbert, Mechanical Engineering and Appl. Mechanics, University of Michigan

Mac Hyman, Group T-7, Los Alamos National Laboratory

Marc Jacobs, Mathematics and Computer Science, AFOSR

Dick Jardine, Mathematical Sciences, R.P.I. and U.S.M.A.

Sisira Jayasinghe, Technical Development/Design Analysis, SDRC

Chris Johnson, Medicine/Mathematics, University of Utah

Bruce Johnston, Analysis Software, Aries Technology

Jim Jones, Computational Mathematics Group, University of Colorado at Denver

Kugan Kandasamy, Analysis Applications, Intergraph Corporation

Gregory Kozlovsky, Computer Science, City College of New York

Scott Lamson, Corporate Research and Development, General Electric

Martin Leachs, Research Division, Benét Laboratories

Tom Levosky, Engineering and Manufacturing Computer Systems, AMP

Likang Li, University of Maryland

Andrea Long, Computer Science, Rensselaer Polytechnic Institute

Isaac Lottati, Hydrodynamic Modeling, Science Application International

Ray Loy, Computer Science, Rensselaer Polytechnic Institute

Steve McCormick, Computational Mathematics, University of Colorado

Andrew Mera, Research and Technology Division, Boeing Computer Services

Peter Moore, Mathematics, Tulane University

Sella Muthukrishnan, University of Texas at Arlington

Rajiv Nambiar, Mechanical Engineering, University of Texas at Arlington

Ahmed Noor, University of Virginia

J. Tinsley Oden, Aero. Engr. and Engr. Mech., TICOM, University of Texas at Austin

Can Ozturan, Computer Science, Rensselaer Polytechnic Institute

James Peng, 62G, IBM

John Peters, Geotechnical Laboratory, US Army Waterways Experiment Station

Roger Pierre, Mathematiques Et Statistique, Université Laval

Kenneth Powell, Aerospace Engineering, University of Michigan

Ramki Ramakrishnan, Theoretical Flow Physics Branch, NASA Langley Research Center

Leszek Sczaniecki, Physics and Astronomy, Bowling Green State University

Ganesh Shastri, Physics and Astronomy, Bowling Green State University

Mark Shephard, SCOREC, Rensselaer Polytechnic Institute

Johann Sienz, Civil Engineering, University College of Swansea

Bruce Simpson, Computer Science, University of Waterloo

Balaram Sinharoy, Computer Science, Rensselaer Polytechnic Institute

Royce Soanes, Research Division, Benét Laboratories

James Stewart, Applied Mechanics, Stanford University

T. Strouboulis, Aerospace Engineering, Texas A&M University

John Swanson, Swanson Analysis Systems

Barna Szabo, Center for Computational Mechanics, Washington University

Ravindra Tetambe, Quality Assurance, Swanson Analysis Systems

Fred Tracy, Information Technology Laboratory, US Army Waterways Experiment Station

John Vasilakis, Research Division, Benét Laboratories

Dennis Vasilopoulos, Engineering Mechanics, General Motors Research

John Walter, Terminal Ballistics Division, Army Ballistic Research Laboratory

Yun Wang, Computer Science, Renssetaer Polytechnic Institute

Ron Webster, Space Operations, Thiokol Corporation

Rolf Wentorf, SCOREC, Rensselaer Polytechnic Institute

Mike Wheeler, Rasna Corporation

Shaojie Xu, Theor. and Applied Math., University of Illinois at Urbana-Champaign

Ren-Jye Yang, CAE Department, Ford Scientific Research Laboratories

Samuel Yee, Geophysics Directorate, Phillips Laboratory

J.Z. Zhu, Universal Energy System